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* Analog Ensemble (AnEn) basic idea

* AnEn for short-term (i.e., 0-48 h) weather predictions

* AnEn for short-term (i.e., 0-72 h) power predictions

* AnEn for long-term (i.e., multi-year) wind resource
assessment

e Summary and future work
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Can we use this information
(i.e., both obs and re-analysis),
to improve forecasts or resource estimates?

Cravd

5 years ago'?"?




There is a problem... R

Edward Lorenz, “Atmospheric predictability as revealed by
naturally occurring analogues” (JAS 1969):

Five years of twice-daily height values of the 200-, 500-, and 850-
mb surfaces at a grid of 1003 points over the Northern Hemisphere

There are numerous mediocre analogues but no truly good ones.

The likelihood of encountering any truly good analogues by
processing all existing upper-level data appears to be small.
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A possible solution? N

Huug van den Dool, “Searching for analogues, how long
must we wait?” (Tellus 1994):

It is found that it would take a library of order of 103° years to find 2
observed flows that match to within current observational error
over a large area such as the Northern Hemisphere.

Obviously, with 10-100 years of data, the probability of finding
natural analogous is very small, unless one is satisfied with analogy
over small areas or in just 2 or 3 degrees of freedom
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* AnEn for short-term (i.e., 0-48 h) weather predictions



Ensemble Prediction RNCAR

The single deterministic forecast f, f
fails to predict the TRUE

The initial probability density function
PDF(0) represents the initial
uncertainties

PDF(t)

Wind Speed

>
&
°-h

An ensemble of perturbed forecasts
f., starting from perturbed initial
conditions designed to sample the
initial uncertainties can be used to C_ PDF(0)|
estimate the probability of future
states PDF(t)

Forecast time

16



NCAR
17

N\

()]
AE
T
—
C
LL]
C
<C v
Q) n —
o .| m
o '
()]
< =
Q =
7)) = _
C =
LL] 5 O
— c
o = S
o m | S
C = =
C T T
< S -
= f=
..................... "
c (qv]
O e
= O
||||||||||||||||||||| (qv]
(b}
o
(@)]
O
@
C
<



NCAR

N\

PRED

*

Analog Ensemble (AnEn)

Analog search as in Delle Monache et al. (MWR 2011)
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Analog search as in Delle Monache et al. (MWR 2011)
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Analog search as in Delle Monache et al. (MWR 2011)
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How skillful is AnEn? N

AnEn generated with Environment Canada GEM (15 km),
0-48 hours

Comparison with:

o Environment Canada Regional Ensemble Prediction System (REPS, next slide)
o Logistic Regression (LR) out of 15-km GEM
o LR our of REPS, i.e., Ensemble Model Output Statistics (EMOS)

Period of 15 months (verification over the last 3 months)
10-m wind speed
550 surface stations over CONUS (in two slides)

Probabilistic prediction attributes: statistical consistency,
reliability, sharpness, resolution, spread-error consistency



N\
Regional Ensemble Prediction System (REPS) kNcAR

* Model: GEM 4.2.0 (vertical staggering)
e« 20 members + 1 control run
e 72 hours forecast lead time

* Resolution: ~33 km with 28 levels

- Initial conditions (i.e., cold start) and 3-hourly boundary N " f‘:?*.‘“ \/
condition updates from GEPS (EnKF + multi-physics) [/5 /(L u‘_§ |
T
 Physics: | | T
: Egg:. e

o Kain et Fritsch (1993) for deep convection N —
o Liet Barker (2005) for the radiation Q
o |ISBA scheme (Noilhan et Planton, 1989) for surface

 Stochastic Physics: Markov Chains on physical tendencies

27



Ground truth dataset

* 550 hourly METAR Surface Observations
* 1 May 2010 — 31 July 2011, for a total of 457 days

* 10-m wind speed

28
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Probabilistic forecast attributes: Reliability

Example:

@ An event (e.g., wind speed > 5 m/s) is predicted to happen
with a 30% probability

@ We collect the observations that verified every time we made
the prediction in (1)

@ If the frequency of the event in the observation collected is
30%, then the forecast is perfectly RELIABLE



Analysis of reliability & sharpness .

Reliability and sharpness diagram: 10-m wind speed > 5 m s-1, 9-h fcst
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Probabilistic forecast attributes: Sharpness

Sharpness refers to the degree of concentration of a forecast PDF’s
probability density, and is a property of the forecasts only.

|deally, we want the forecast system, while mainly reliable, with as

many forecasts as possible close to 0% and 100%, corresponding to a
perfect deterministic forecast system. However, an improvement in

sharpness does not necessarily mean that the forecast system has
improved.

RN
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Sharper Forecast Less Sharp Forecast



Analysis of reliability & sharpness .

Reliability and sharpness diagram: 10-m wind speed > 5 m s-1, 9-h fcst
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Probabilistic forecast attributes:

Resolution

|
|
|
I
|
|
|
|
|

B a—
\""'-..
..-—""'.-#
v
| ———
N\
T
——
f"-’,#
,f
I
|

T ~ -
T + OBS A OBSB

FCSTA FCSTB

Consider different classes of forecast events.

N\

NCAR

If all observed classes corresponds to different forecast classes,

then the probabilistic forecast has perfect RESOLUTION.
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Relative Operating Characteristics skill score, 10-m wind speed =5, 10 m st

WSPD >5ms! WSPD > 10 m s
sample climatology: 18.1 % (12 UTC) to 44.9 % (21 UTC) sample climatology: 0.6 % (12 UTC) to 3.4 % (21 UTC)
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ROCSS better

worse

AnEn sensitivity

Relative Operating Characteristics skill score, 10-m wind speed =5 m s

AnEn with a shorter

-

0.751
0.7

0.65

training data set (15 = 9 months)

AnEn s
LR

— Full Training

= = Short Training

0 6 12 18 24 30 36 42 48
Forecast Lead Time (hours)

AnEn built with a coarser
dynamical model (15 = 33 km)

0.8

0.5+

AnEn
LR
=— Fine Resolution (15-km GEM)

= = Coarse Resolution (33—-km REPS mem. # 20)

6 12 18 24 30 36 42 48
Forecast Lead Time (hours)

N

NCAR
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Probabilistic forecast attributes:
Statistical and spread-error consistency

(D The ensemble spread tell us how uncertain a forecast is.
|deally, large spread should be associate with larger
uncertainties, low spread should indicate higher accuracy

@ If an ensemble is perfect, than the observations are
indistinguishable from the ensemble members



Analysis of spread-error consistency ()
Binned spread-skill diagram, 10-m wind speed, 42-h fcst
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* AnEn for short-term (i.e., 0-72 h) power predictions



Probabilistic power prediction with an N
analog ensemble o

Goal:
Accurate power forecasts and reliable quantification of forecast
uncertainty

Motivation:
* Increase wind energy penetration in the energy market

o Optimized Servicing
o Less spinning reserves needed and optimized servicing of wind individual
turbines



Test site: Wind farm in northern Sicily — 9 turbines, 850 kW Nominal Power (NP)
Training period: November 2010 - October 2012

Verification period: November 2011 — October 2012

Probabilistic prediction systems: ECMWF EPS, COSMO LEPS, AnEn



Normalized Power

Normalized power (nameplate capacity)

Power predictions 0

NCAR

Flow dependent percentiles from Analog Ensemble approch

N 50-60% percentile
I 10-50% percentile
N 50-70% percentile

I 30-40% percentile
—/* ——————— R - - - 7 - - R P L - - - | I 70-80% percentile
*\ | : : | | © | 20-30% percentile

Deterministic forecast |-

| | | | | |
12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00

Valid for:06-11-2010

Forecast Lead Time
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RMSE of Nominal Power (%)
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Ensemble Mean RMSE (kw)
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* AnEn for long-term (i.e., multi-year) wind resource

assessment



AnEn for wind resource assessment ﬁNCAR

* Recreate a long-term observation-based wind climatology at site
 Downscale a long-term NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) time series using a short-term record of observations

Observed
wind speed

|

<€ ><€ >

1992 19 years to downscale 2010 1 year where 2011
MERRA/obs.

overlap
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AnEn for wind resource assessment ﬁNCAR

* Recreate a long-term observation-based wind climatology at site
 Downscale a long-term NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) time series using a short-term record of observations

Observed
wind speed

MERRA
wind
speed
<
1992 19 years to downscale 2010 1 year where 2011

MERRA/obs.
overlap



AnEn for wind resource assessment BNCAR

* Recreate a long-term observation-based wind climatology at site

 Downscale a long-term NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) time series using a short-term record of observations

Analog ensemble
(deterministic + probabilistic)

\S

Observed
wind speed

MERRA i \ "| 'l AT -
wind ' : | L, A ' “““ § ]
0, S '/ " N
speed ik § f‘,‘i/“ AW T o u i 1N
- A ' I \u\,' \ ‘ { ' ' ‘ I\ | [
’ ' ) & | W W A\ ot
< > < >
1992 19 years to downscale 2010 1 year where 2011
MERRA/obs.

overlap



Results: example of time series (Lamont, OK) =

NCAR
Lamont, OK: simple topography
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Training period: 2009-10-18 to 2010-10-17, downscale period: 2001-01-01 to 2009-10-17 Pearson r* = 0.80, Spearman r = 0.89 (across period shown; daily)



Deterministic results (Lamont, OK) N\

< Better RMSE (m s)

MERRA

Analog Ensemble

T
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T T T T
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Analog Ensemble
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Variables used to select analogs



Probabilistic results (Lamont, OK) N\
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Deterministic results (Goodnoe Hill, WA)R

* Observations ° MERRA L AN

= T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 40 45

Standard deviation (m/s)
Centered RMSE (m/s) O Bias (m/s, dashed: < 0, solid: > 0)

Training period: last 365 days, period downscaled: last 5 entire years, analogs: 25



Probability density

PDFs comparison (Goodnoe Hill, WA)

N\
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—1 Observations
C——/1 MERRA

0.124 Analog ensemble
0.09+
¢ Outlier
g E====1 J . 7gth
Inside.” [ .-
_L—L inner .. M?han
—_ fence .. T . 5cth
0.06 12
¢ Outlier
0.03+
0.00 T T T T T T T T T T T T T T T 1 =T 1 T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 30

Wind speed (m/s)

Training period: last 365 days, period downscaled: last 5 entire years, analogs: 25
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0.20+

0.16+

Probability density

0.04+

0.00

PDFs comparison (“Site 216”) =

3 4 5 6

NCAR

s MERRA
AN
— Observations

I- T T T T T T T T 1 I I I I I
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 30
Wind speed (m/s)

Training period: last 365 days, period downscaled: last 3 entire years, analogs: 25
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AnEn for wind resource assessment ®
in areas with no observations

* Recreate a long-term observation-based wind climatology at site
 Downscale a long-term NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) time series using a short-term record from high-res model

Analog ensemble High-res model
(deterministic + probabilistic) wind speed

>

1992 19 years to downscale 1 year where 2011
MERRA/high-res
model overlap
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e Summary and future work
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Summary and future work N\
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The analog ensemble provides accurate predictions/estimates and
reliable uncertainty quantification (at a lower computational cost) for

o Short-term (0-48 h) weather predictions
o Short-term (0-72 h) power predictions
o Long-term wind resource assessment

The analog ensemble could also be used to drastically reduce the
computational cost of dynamical downscaling (with the added value of
uncertainty quantification)

Could it be a game-changer for some of these applications?
Current/Future work:

o AnEn optimization (e.g., adaptive number of analogs)

o Explore new predictors, and new predictor selection criteria

o Tests with multi-year training data set
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Thanks!

(lucadm@ucar.edu)
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NCAR's Wind Energy Prediction System nos
for Xcel Energy

NCEP Data
NAM
GFS

RUC
GEM (Canada)

« J
WRF RTFDDA

Wind Farm Data

Nacelle wind speed
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Node power
Met tower
Availability

System

WRF+MM5
Ensemble

Supplemental
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Met towers

Wind profiler
Surface Stations
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Verification
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Accurate prediction economical benefits

NCAR-Xcel Energy Project

s

~N
~$1.9M per each

2010 TOtaI BeHEfit improsz:::::

» Error Reduction (expected 2%)
> PSCo; NSP — much higher than expected
> SPS - higher than expected
» Rate of Savings
> PSCo — meets expectations (expected $800k/% MAPE)
> NSP - higher than expected (expected $500k/% MAPE)
> SPS — much lower than expected (expected 600k/%MAPE)

OpCo 2009 2010 Delta  Rate of Savings Annualized
PSCo 18.07% 14.25%  -381% $ 850,665 $ 3,245,102
NSP 15.66% 12.20% -347% $ 748,827 $2,596,873
SPS 16.26% 13.86% -2.39% $ 175,000 $ 418,443
*Mean Absolute Percent Error
Wind Forecasting Savings $6,260,417
Curtailment Auditing Savings $1,260,000

Grand Total $7,520,417

K (? Xcel Energy*

J

N\

NCAR



NCAR-Xcel Energy Project ENCAR
CO, reduction due to accurate predictions

“The avoided generation occurred when Xcel cycled offline
baseload thermal units (coal or natural gas combined cycle) due
to extended periods of forecasted low loads and high winds.”

AVOIDED EMISSIONS DUE TO IMPROVED PREDICTIONS: 238,136 TONS OF CO,

MWh’s of avoided generation in 2011
Arapahoe 3 = 317

Arapahoe 4 = 6,941

Cherokee 1 = 11,606

Cherokee 2 = 13,772

Valmont 5 = 10,061

FSV CC = 93,626

RMEC CC = 308,989
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Probabilistic forecast attributes: =
Economic value (value score)

Potential value of a forecast in a decision making framework; it
can be estimated using a static cost-loss decision model for a
dichotomous event (Wilks, 2000).

A decision maker can chose to pay a cost C (e.g., cost of
evacuation efforts) to protect against a possible loss L (with L
> C): if protective action is not taken, than the decision maker
incurs a loss L if the adverse event incurs (e.g., lost lives).



Analysis of Value N

Economic value diagram, 10-m wind speed =5 m/s NCAR

perfect forecast
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RMSE ens. mean, ens. spread (m s1)

RMSE ens. mean, ens. spread (m s)

Analysis of spread-error consistency ()
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Measuring Value N\

NCAR

Value Score (or expense skill score)

E,. —-FE., E,.,= Expense from follow the forecast
VS = fest clim . .
E E .., = Expense from follow a climatological forecast
-E,
per _— E, .= Expense from follow a perfect forecast
1 a = # of hits
M(aa+ba+c) - min(az, 0) b = # of false alarms
Vs = _ :
oo — min(a, 0) c = # of misses

d = # of correct rejections
o = (/L ratio
0 = (atc)/ (a+b+c+d)

Event Observed
Yes Mo

Prepare

Forecast
andfor
-
[an}
(i1 ]
k)
[yl
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Power predictions @

NCAR

Binned spread-skill diagram, power forecasts
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The metric (1) Ncan

Analog strength for a particular forecast lead time t is measured by the distance
between current and past forecast, over a short window, 2 wide
1 |4 2
”ft — gt,” - E (fHk — g”k) o;: Forecasts’ standard deviation over

O'f P entire analog training period

Expanded to multiple predictor variables, but still focused on predictand f:

(for wind speed, predictors are speed, direction, sfc. temp., sfp pressure, and PBL depth)
N, +7

”f ~g ” _ E W, E (fv _ gv’ )2 N, : Number of predictor variables
oot O  \J1+k Otk w, : Weight given to each predictor
v=l 7 fY k=—t
A
§ Current Forecast, f
o
N Past Forecast, g t+1
E TR
! ‘
= t-1 t+1 ;
t-1
| | | | | | | |




Wind Speed

The metric (2

NCAR
After finding the n strongest analogs, each of the n AnEn members is taken
as the verifying observation from each analog.
A
Current Forecast, f
Past Forecast, g t+1
0/;\‘
_|_
.- ‘o'\
observation T TTT=-—____ t:], --" "SAnEn
——————————————— member #7

| S
Cd

3h



Ensemble Prediction RNCAR

The single deterministic forecast f, f
fails to predict the TRUE

The initial probability density function
PDF(0) represents the initial
uncertainties

PDF(t)

Wind Speed

>
&
°-h

An ensemble of perturbed forecasts
f., starting from perturbed initial
conditions designed to sample the
initial uncertainties can be used to C_ PDF(0)|
estimate the probability of future
states PDF(t)

Forecast time

72



N\
NCAR

Cost-benefit of the analog technique

* Design, implementation, and maintenance of the
analog and NWP ensemble techniques

— Shared requirements
= NWP-model-based data assimilation and forecast.

= Calibration: both approaches use a calibration technique, and each
requires about the same effort to develop and implement

— Unique requirements for REPS

= Multiple physics packages (for multimodel ensembles), and
= Stochastic physics routines



N
Cost-benefit of the analog technique )

* Computational expense

— SCENARIO I: You must run your own NWP model

= REPS requires about 2-3 times more calculations than the analog
technique

— SCENARIO Il: Use an available NWP product (e.g., from NCEP)

= REPS requires orders of magnitude more calculations than the analog
technique
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NASA’'s MERRA * |Introdueth

on

NCAR

NASA Modern-Era Retrospective Analysis
for Research and Applications (MERRA)

Based on NASA’s Global Atmospheric Model
and Data Assimilation System

3-D worldwide record of weather from 1979

1/2 degrees latitude x 2/3 degrees longitude
Hourly surface 2D and 6 hourly 3D fields
Assimilation of all NASA historical satellite data

Conventional data




